login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of Dyck paths of semilength k such that the area between the x-axis and the path is n (n>=0; 0<=k<=n).
11

%I #36 Mar 11 2015 10:58:57

%S 1,0,1,0,0,1,0,0,0,1,0,0,1,0,1,0,0,0,2,0,1,0,0,0,0,3,0,1,0,0,0,1,0,4,

%T 0,1,0,0,0,0,3,0,5,0,1,0,0,0,1,0,6,0,6,0,1,0,0,0,0,3,0,10,0,7,0,1,0,0,

%U 0,0,0,7,0,15,0,8,0,1,0,0,0,0,2,0,14,0,21,0,9,0,1,0,0,0,0,0,7,0,25,0,28,0,10,0,1,0,0,0,0,1,0,17,0,41,0,36,0,11,0,1

%N Triangle read by rows: T(n,k) is the number of Dyck paths of semilength k such that the area between the x-axis and the path is n (n>=0; 0<=k<=n).

%C Triangle A129182 transposed.

%C Column sums give the Catalan numbers (A000108).

%C Row sums give A143951.

%C Sums along falling diagonals give A005169.

%C T(4n,2n) = A240008(n). - _Alois P. Heinz_, Mar 30 2014

%H Joerg Arndt and Alois P. Heinz, <a href="/A239927/b239927.txt">Rows n = 0..140, flattened</a>

%F G.f.: F(x,y) satisfies F(x,y) = 1 / (1 - x*y * F(x, x^2*y) ).

%F G.f.: 1/(1 - y*x/(1 - y*x^3/(1 - y*x^5/(1 - y*x^7/(1 - y*x^9/( ... )))))).

%e Triangle begins:

%e 00: 1;

%e 01: 0, 1;

%e 02: 0, 0, 1;

%e 03: 0, 0, 0, 1;

%e 04: 0, 0, 1, 0, 1;

%e 05: 0, 0, 0, 2, 0, 1;

%e 06: 0, 0, 0, 0, 3, 0, 1;

%e 07: 0, 0, 0, 1, 0, 4, 0, 1;

%e 08: 0, 0, 0, 0, 3, 0, 5, 0, 1;

%e 09: 0, 0, 0, 1, 0, 6, 0, 6, 0, 1;

%e 10: 0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1;

%e 11: 0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1;

%e 12: 0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1;

%e 13: 0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1;

%e 14: 0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1;

%e 15: 0, 0, 0, 0, 0, 5, 0, 35, 0, 63, 0, 45, 0, 12, 0, 1;

%e 16: 0, 0, 0, 0, 1, 0, 16, 0, 65, 0, 92, 0, 55, 0, 13, 0, 1;

%e 17: 0, 0, 0, 0, 0, 5, 0, 40, 0, 112, 0, 129, 0, 66, 0, 14, 0, 1;

%e 18: 0, 0, 0, 0, 0, 0, 16, 0, 86, 0, 182, 0, 175, 0, 78, 0, 15, 0, 1;

%e 19: 0, 0, 0, 0, 0, 3, 0, 43, 0, 167, 0, 282, 0, 231, 0, 91, 0, 16, 0, 1;

%e 20: 0, 0, 0, 0, 0, 0, 14, 0, 102, 0, 301, 0, 420, 0, 298, 0, 105, 0, 17, 0, 1;

%e ...

%e Column k=4 corresponds to the following 14 paths (dots denote zeros):

%e #: path area steps (Dyck word)

%e 01: [ . 1 . 1 . 1 . 1 . ] 4 + - + - + - + -

%e 02: [ . 1 . 1 . 1 2 1 . ] 6 + - + - + + - -

%e 03: [ . 1 . 1 2 1 . 1 . ] 6 + - + + - - + -

%e 04: [ . 1 . 1 2 1 2 1 . ] 8 + - + + - + - -

%e 05: [ . 1 . 1 2 3 2 1 . ] 10 + - + + + - - -

%e 06: [ . 1 2 1 . 1 . 1 . ] 6 + + - - + - + -

%e 07: [ . 1 2 1 . 1 2 1 . ] 8 + + - - + + - -

%e 08: [ . 1 2 1 2 1 . 1 . ] 8 + + - + - - + -

%e 09: [ . 1 2 1 2 1 2 1 . ] 10 + + - + - + - -

%e 10: [ . 1 2 1 2 3 2 1 . ] 12 + + - + + - - -

%e 11: [ . 1 2 3 2 1 . 1 . ] 10 + + + - - - + -

%e 12: [ . 1 2 3 2 1 2 1 . ] 12 + + + - - + - -

%e 13: [ . 1 2 3 2 3 2 1 . ] 14 + + + - + - - -

%e 14: [ . 1 2 3 4 3 2 1 . ] 16 + + + + - - - -

%e There are no paths with weight < 4, one with weight 4, none with weight 5, 3 with weight 6, etc., therefore column k=4 is

%e [0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, ...].

%e Row n=8 is [0, 0, 0, 0, 3, 0, 5, 0, 1], the corresponding paths of weight=8 are:

%e Semilength 4:

%e [ . 1 . 1 2 1 2 1 . ]

%e [ . 1 2 1 . 1 2 1 . ]

%e [ . 1 2 1 2 1 . 1 . ]

%e Semilength 6:

%e [ . 1 . 1 . 1 . 1 . 1 2 1 . ]

%e [ . 1 . 1 . 1 . 1 2 1 . 1 . ]

%e [ . 1 . 1 . 1 2 1 . 1 . 1 . ]

%e [ . 1 . 1 2 1 . 1 . 1 . 1 . ]

%e [ . 1 2 1 . 1 . 1 . 1 . 1 . ]

%e Semilength 8:

%e [ . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . ]

%p b:= proc(x, y, k) option remember;

%p `if`(y<0 or y>x or k<0, 0, `if`(x=0, `if`(k=0, 1, 0),

%p b(x-1, y-1, k-y+1/2)+ b(x-1, y+1, k-y-1/2)))

%p end:

%p T:= (n, k)-> b(2*k, 0, n):

%p seq(seq(T(n, k), k=0..n), n=0..20); # _Alois P. Heinz_, Mar 29 2014

%t b[x_, y_, k_] := b[x, y, k] = If[y<0 || y>x || k<0, 0, If[x == 0, If[k == 0, 1, 0], b[x-1, y-1, k-y+1/2] + b[x-1, y+1, k-y-1/2]]]; T[n_, k_] := b[2*k, 0, n]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Feb 18 2015, after _Alois P. Heinz_ *)

%o (PARI)

%o rvec(V) = { V=Vec(V); my(n=#V); vector(n, j, V[n+1-j] ); }

%o print_triangle(V)= { my( N=#V ); for(n=1, N, print( rvec( V[n]) ) ); }

%o N=20; x='x+O('x^N);

%o F(x,y, d=0)=if (d>N, 1, 1 / (1-x*y * F(x, x^2*y, d+1) ) );

%o v= Vec( F(x,y) );

%o print_triangle(v)

%Y Sequences obtained by particular choices for x and y in the g.f. F(x,y) are: A000108 (F(1, x)), A143951 (F(x, 1)), A005169 (F(sqrt(x), sqrt(x))), A227310 (1+x*F(x, x^2), also 2-1/F(x, 1)), A239928 (F(x^2, x)), A052709 (x*F(1,x+x^2)), A125305 (F(1, x+x^3)), A002212 (F(1, x/(1-x))).

%Y Cf. A047998, A138158, A227543.

%Y Cf. A129181.

%K nonn,tabl

%O 0,19

%A _Joerg Arndt_, Mar 29 2014