login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239926
3^(p-1)-2^(p+1) for primes p > 3.
1
17, 473, 54953, 515057, 42784577, 386371913, 31364282393, 22875718713137, 205886837127353, 150094360419092177, 12157661061010417697, 109418971539326314793, 8862937838177524385273, 6461081871212274789450257, 4710128696093323330314756713
OFFSET
1,1
COMMENTS
3^(p-1)-2^(p+1) can be written as (3^((p-1)/2)-2^((p+1)/2))*(3^((p-1)/2)+2^((p+1)/2)). Since 3^((p-1)/2)-2^((p+1)/2) > 1 for p > 5, these numbers are all composite after 17 = (3^2-2^3)*(3^2+2^3).
LINKS
MATHEMATICA
Table[3^(Prime[n] - 1) - 2^(Prime[n] + 1), {n, 3, 100}]
PROG
(Magma) [3^(p-1)-2^(p+1): p in PrimesInInterval(4, 100)];
CROSSREFS
Cf. A000040, A003063, A135171 (numbers of the form 3^p-2^p with p prime), A214091 (supersequence).
Sequence in context: A196484 A196717 A220598 * A111920 A296740 A166116
KEYWORD
nonn,easy,less
AUTHOR
Vincenzo Librandi, Jun 17 2014
STATUS
approved