login
A239424
T(n,k)=Number of nXk 0..3 arrays with no element equal to the sum of elements to its left or the sum of the elements above it or the sum of the elements diagonally to its northwest, modulo 4
5
3, 6, 6, 14, 18, 14, 32, 80, 80, 32, 72, 320, 684, 320, 72, 164, 1244, 4740, 4740, 1244, 164, 372, 4990, 34728, 60626, 34728, 4990, 372, 844, 19560, 247942, 811554, 811554, 247942, 19560, 844, 1916, 77220, 1823840, 10575232, 21127494, 10575232, 1823840
OFFSET
1,1
COMMENTS
Table starts
....3.......6........14..........32...........72...........164...........372
....6......18........80.........320.........1244..........4990.........19560
...14......80.......684........4740........34728........247942.......1823840
...32.....320......4740.......60626.......811554......10575232.....145743440
...72....1244.....34728......811554.....21127494.....503941286...13584156020
..164....4990....247942....10575232....503941286...22336992290.1143701274244
..372...19560...1823840...145743440..13584156020.1143701274244
..844...77220..13104784..1928821306.331591613568
.1916..304224..96061078.26684346362
.4348.1197958.695765782
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
k=2: [order 14] for n>15
EXAMPLE
Some solutions for n=4 k=4
..1..3..3..1....3..2..3..3....3..2..2..1....3..1..2..3....3..2..2..1
..3..0..0..2....2..0..0..1....2..0..1..0....2..0..0..0....2..0..3..0
..2..1..2..0....2..0..0..3....3..1..1..2....3..0..0..2....2..1..0..0
..3..1..2..1....2..0..1..2....3..2..2..2....3..0..1..2....1..0..0..2
CROSSREFS
Column 1 is A238768
Sequence in context: A319867 A202931 A240250 * A119306 A107972 A238775
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 17 2014
STATUS
approved