login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238997
T(n,k)=Number of nXk 0..3 arrays with no element equal to two plus the sum of elements to its left or two plus the sum of the elements above it, modulo 4
8
3, 7, 7, 15, 41, 15, 31, 203, 203, 31, 63, 955, 2365, 955, 63, 127, 4393, 25601, 25601, 4393, 127, 255, 20015, 270671, 638779, 270671, 20015, 255, 511, 90841, 2827709, 15482441, 15482441, 2827709, 90841, 511, 1023, 411621, 29422487, 370847909
OFFSET
1,1
COMMENTS
Table starts
....3.......7.........15............31...............63..................127
....7......41........203...........955.............4393................20015
...15.....203.......2365.........25601...........270671..............2827709
...31.....955......25601........638779.........15482441............370847909
...63....4393.....270671......15482441........860394281..........47194836429
..127...20015....2827709.....370847909......47194836429........5929702056895
..255...90841...29422487....8839918663....2576820346901......741313154055591
..511..411621..305525459..210298050207..140374233864007....92478950275376419
.1023.1863915.3170576253.4998886061169.7641515368274447.11527212881627494067
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2)
k=2: [order 9]
k=3: [order 35]
EXAMPLE
Some solutions for n=3 k=4
..3..3..1..3....1..0..1..1....3..3..1..3....0..1..1..3....0..1..1..1
..0..3..0..2....0..3..2..0....0..3..2..2....0..1..0..2....1..0..1..2
..3..2..0..1....1..2..2..2....0..3..2..2....0..3..2..0....0..1..2..2
CROSSREFS
Column 1 is A000225(n+1)
Sequence in context: A240422 A130003 A098581 * A240260 A240427 A239047
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 08 2014
STATUS
approved