login
A238900
Least k such that one of 2^n +- 2^k +- 1 is prime, where 0 < k < n, or 0 if there is no such prime.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 12, 2, 11, 1, 1, 1, 1, 2, 3, 9, 5, 2, 3, 3, 3, 4, 5, 4, 8, 3, 7, 4, 2, 6, 17, 14, 6, 12, 2, 5, 1, 2, 3, 6, 11, 5, 1, 16, 8, 8, 20, 2, 1, 5, 7, 19, 6, 4, 19, 8, 5, 4, 5, 3, 9, 6, 4, 3, 13, 1, 24
OFFSET
2,10
COMMENTS
Does a(n) = 0 for some n?
LINKS
Giovanni Resta, Table of n, a(n) for n = 2..10000 (first 1999 terms from T. D. Noe)
MATHEMATICA
Table[c1 = 2^n; k = 1; While[c2 = 2^k; k < n && ! (PrimeQ[c1 + c2 + 1] || PrimeQ[c1 + c2 - 1] || PrimeQ[c1 - c2 + 1] || PrimeQ[c1 - c2 - 1]), k++]; If[k == n, 0, k], {n, 2, 100}]
CROSSREFS
Cf. A196697.
Sequence in context: A091887 A144871 A066799 * A037832 A170977 A039737
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 17 2014
STATUS
approved