login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238813
Numerators of the coefficients of Euler-Ramanujan’s harmonic number expansion into negative powers of a triangular number.
5
1, -1, 1, -1, 1, -191, 29, -2833, 140051, -6525613, 38899057, -532493977, 4732769, -12945933911, 168070910246641, -4176262284636781, 345687837634435, -26305470121572878741, 1747464708706073081, -2811598717039332137041, 166748874686794522517053
OFFSET
1,6
COMMENTS
H_k = Sum_{i=1..k} 1/i = log(2*m)/2 + gamma + Sum_{n>=1} R_n/m^n, where m = k(k+1)/2 is the k-th triangular number. This sequence lists the numerators of R_n (denominators are listed in A093334).
LINKS
Chao-Ping Chen, On the coefficients of asymptotic expansion for the harmonic number by Ramanujan, The Ramanujan Journal, (2016) 40: 279.
M. B. Villarino, Ramanujan’s Harmonic Number Expansion into Negative Powers of a Triangular Number, Journal of Inequalities in Pure and Applied Mathematics, Volume 9, Issue 3, Article 89 (also arXiv:0707.3950v2 [math.CA] 28 Jul 2007).
FORMULA
R(n) = (-1)^(n-1)/(2*n*8^n)*(1 + Sum_{i=1..n} (-4)^i*binomial(n,i)* B_2i(1/2)), a(n) = denominator(R_n), and B_2i(x) is the (2i)-th Bernoulli polynomial.
From Peter Luschny, Aug 13 2017: (Start)
a(n) = -numerator(A212196(n)/2^n), A212196 the Bernoulli median numbers.
a(n) = -numerator((Sum_{k=0..n} binomial(n,k)*bernoulli(n+k))/2^n).
a(n) = -numerator(I(n)/2^n) with I(n) = (-1)^n*Integral_{x=0..1} S(n,x)^2 and S(n,x) = Sum_{k=0..n} Stirling2(n,k)*k!*(-x)^k. (End)
EXAMPLE
R_9 = 140051/17459442 = a(9)/A093334(9).
MAPLE
a := n -> - numer(add(binomial(n, k)*bernoulli(n+k), k=0..n)/2^n);
seq(a(n), n=1..21); # Peter Luschny, Aug 13 2017
MATHEMATICA
Table[Numerator[-Sum[Binomial[n, k]*BernoulliB[n+k]/2^n, {k, 0, n}]], {n, 1, 25}] (* G. C. Greubel, Aug 30 2018 *)
PROG
(PARI) Rn(nmax)= {local(n, k, v, R); v=vector(nmax); x=1/2;
for(n=1, nmax, R=1; for(k=1, n, R+=(-4)^k*binomial(n, k)*eval(bernpol(2*k)));
R*=(-1)^(n-1)/(2*n*8^n); v[n]=R); return (v); }
// returns an array v[1..nmax] of the rational coefficients
CROSSREFS
Cf. A000217 (triangular numbers), A001620 (gamma), A093334 (denominators).
Cf. A212196.
Sequence in context: A217343 A221112 A295476 * A103494 A104642 A115016
KEYWORD
sign,frac
AUTHOR
Stanislav Sykora, Mar 05 2014
STATUS
approved