login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238759
The number of P-positions in the game of Nim with up to five piles, allowing for piles of zero, such that the total number of objects in all piles is 2n.
2
1, 10, 15, 100, 65, 150, 175, 1000, 565, 650, 475, 1500, 925, 1750, 1875, 10000, 5565, 5650, 3475, 6500, 3725, 4750, 3875, 15000, 8425, 9250, 6375, 17500, 10625, 18750, 19375, 100000, 55565, 55650, 33475, 56500, 31725, 34750, 23875, 65000
OFFSET
0,2
COMMENTS
First differences of A238147.
LINKS
T. Khovanova and J. Xiong, Nim Fractals, arXiv:1405.594291 [math.CO] (2014), p. 17 and J. Int. Seq. 17 (2014) # 14.7.8.
FORMULA
a(2n+1) = 10*a(n), a(2n+2) = a(n+1) + 5*a(n).
EXAMPLE
The P-positions with the total of 4 are permutations of (0,0,0,2,2) and (0,1,1,1,1). Therefore, a(2)=15.
MATHEMATICA
Table[Length[
Select[Flatten[
Table[{n, k, j, i, BitXor[n, k, j, i]}, {n, 0, a}, {k, 0, a}, {j,
0, a}, {i, 0, a}], 3], Total[#] == a &]], {a, 0, 90, 2}]
(* Second program: *)
(* b = A238147 *) b[n_] := b[n] = Which[n <= 1, {1, 11}[[n+1]], OddQ[n], 11 b[(n-1)/2] + 5 b[(n-1)/2 - 1], EvenQ[n], b[(n-2)/2 + 1] + 15 b[(n-2)/2]];
Join[{1}, Differences[Array[b, 40, 0]]] (* Jean-François Alcover, Dec 14 2018 *)
CROSSREFS
Cf. A238147 (partial sums), A048883 (3 piles), A237711 (4 piles), A241523, A241731.
Sequence in context: A056511 A339314 A166626 * A278349 A114703 A134515
KEYWORD
nonn
AUTHOR
Tanya Khovanova and Joshua Xiong, May 02 2014
STATUS
approved