login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238578
Expansion of -(-4*x^4 + sqrt(-4*x^2-4*x+1) * (2*x^3+x^2-2*x) -12*x^3-7*x^2+2*x) / (sqrt(-4*x^2-4*x+1) * (4*x^3+8*x^2+3*x-1) - 4*x^3-8*x^2-3*x+1).
1
0, 1, 3, 11, 45, 191, 833, 3695, 16593, 75199, 343233, 1575551, 7265921, 33637631, 156234497, 727681791, 3397475585, 15896054783, 74512968705, 349859309567, 1645121398785, 7746058698751, 36516283891713, 172332643868671, 814108326764545, 3849410342715391
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} Sum_{i=0..(n-k)} C(k,n-k-i)*C(k+i-1,k-1)*C(n-1,k-1).
G.f.: A(x) = ((x*F(x)-x^2)*F'(x)))/F(x)^2, where F(x) = (1-sqrt(-4*x^2-4*x+1))/(2*x+2), F(x) is g.f. of A052709.
D-finite with recurrence: (for n>5): (n-5)*(n-1)*a(n) = (3*n^2 - 20*n + 23)*a(n-1) + 2*(n-2)*(4*n-19)*a(n-2) + 4*(n-4)*(n-3)*a(n-3). - Vaclav Kotesovec, Mar 03 2014
a(n) ~ (2 + 2*sqrt(2))^n / (2^(5/4) * sqrt(1+sqrt(2)) * sqrt(Pi*n)). - Vaclav Kotesovec, Mar 03 2014
MATHEMATICA
Table[Sum[Binomial[n - 1, k - 1] * Sum[Binomial[k, n - k - i] * Binomial[k + i - 1, k - 1], {i, 0, n - k}], {k, n}], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 02 2014 *)
CoefficientList[Series[-(-4*x^4 + Sqrt[-4*x^2-4*x+1]*(2*x^3+x^2-2*x) -12*x^3-7*x^2+2*x)/(Sqrt[-4*x^2-4*x+1]*(4*x^3+8*x^2+3*x-1) - 4*x^3-8*x^2-3*x+1), {x, 0, 50}], x] (* G. C. Greubel, Jun 01 2017 *)
PROG
(Maxima)
a(n):= sum((sum(binomial(k, n-k-i)*binomial(k+i-1, k-1), i, 0, n-k)) *binomial(n-1, k-1), k, 1, n);
(PARI) x='x+O('x^50); concat([0], Vec(-(-4*x^4 + sqrt(-4*x^2-4*x+1)*(2*x^3+x^2-2*x) -12*x^3-7*x^2+2*x)/(sqrt(-4*x^2-4*x+1)*(4*x^3+8*x^2+3*x-1) - 4*x^3-8*x^2-3*x+1))) \\ G. C. Greubel, Jun 01 2017
(PARI) for(n=0, 25, print1(sum(k=1, n, binomial(n-1, k-1)*sum(i=0, n-k, binomial(k, n-k-i)*binomial(k+i-1, k-1))), ", ")) \\ G. C. Greubel, Jun 01 2017
CROSSREFS
Cf. A052709.
Sequence in context: A292278 A151112 A083324 * A151113 A151114 A083878
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 01 2014
STATUS
approved