login
A238509
a(n) = |{0 < k < n: p(n) + p(k) - 1 is prime}|, where p(.) is the partition function (A000041).
7
0, 1, 1, 2, 2, 3, 2, 1, 1, 2, 1, 2, 3, 4, 1, 4, 5, 2, 1, 5, 2, 1, 1, 3, 5, 2, 3, 2, 2, 4, 7, 3, 2, 2, 5, 6, 3, 7, 3, 3, 4, 3, 3, 2, 2, 4, 7, 4, 8, 3, 9, 4, 6, 4, 3, 7, 3, 2, 3, 4, 5, 3, 7, 4, 3, 5, 1, 9, 10, 6, 8, 2, 3, 3, 6, 6, 3, 1, 2, 7, 1, 6, 5, 2, 6, 8, 3, 4, 1, 1, 1, 9, 12, 3, 2, 3, 8, 4, 3, 2
OFFSET
1,4
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 1. Also, if n > 2 is different from 8 and 25, then p(n) + p(k) + 1 is prime for some 0 < k < n.
(ii) If n > 7, then n + p(k) is prime for some 0 < k < n.
(iii) If n > 1, then p(k) + q(n) is prime for some 0 < k < n, where q(.) is the strict partition function given by A000009. If n > 2, then p(k) + q(n) - 1 is prime for some 0 < k < n. If n > 1 is not equal to 8, then p(k) + q(n) + 1 is prime for some 0 < k < n.
LINKS
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
EXAMPLE
a(11) = 1 since p(11) + p(10) - 1 = 56 + 42 - 1 = 97 is prime.
a(247) = 1 since p(247) + p(228) - 1 = 182973889854026 + 40718063627362 - 1 = 223691953481387 is prime.
MATHEMATICA
p[n_, k_]:=PrimeQ[PartitionsP[n]+PartitionsP[k]-1]
a[n_]:=Sum[If[p[n, k], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 27 2014
STATUS
approved