Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 17 2020 07:33:29
%S 1,2,6,18,55,169,520,1601,4930,15182,46754,143983,443409,1365520,
%T 4205249,12950466,39882198,122821042,378239143,1164823609,3587185688,
%U 11047081345,34020543362,104769516446,322647744322,993624581343,3059961912097,9423445312544
%N Expansion of (1-x-x^2)/((x-1)*(x^3+3*x^2+2*x-1)).
%C Row sums of the triangle in A152440.
%H Vincenzo Librandi, <a href="/A238236/b238236.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,-2,-1).
%F G.f.: (1-x-x^2)/(1-3*x-x^2+2*x^3+x^4).
%F a(n) = 3*a(n-1) + a(n-2) -2*a(n-3) - a(n-4), a(0) = 1, a(1) = 2, a(2) = 6, a(3) = 18.
%F a(n) = A097472(n) - A097472(n-1) - A097472(n-2).
%F a(n) = A060945(2*n).
%F a(n)-a(n-1) = A099098(n). - _R. J. Mathar_, Jun 17 2020
%t CoefficientList[Series[(1 - x - x^2)/(1 - 3 x - x^2 + 2 x^3 + x^4), {x, 0, 40}], x ](* _Vincenzo Librandi_, Feb 22 2014 *)
%Y Cf. A097472, A152440, A099098 (first differences).
%K nonn,easy
%O 0,2
%A _Philippe Deléham_, Feb 20 2014