Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Oct 06 2017 08:36:40
%S 1,1,1,1,1,2,1,2,2,1,3,4,1,3,8,1,4,12,3,1,4,18,8,1,5,24,22,1,5,32,40,
%T 6,1,6,40,73,22,1,6,50,112,66,1,7,60,172,146,10,1,7,72,240,292,48,1,8,
%U 84,335,516,174,1,8,98,440,860,448,20
%N Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X 4 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=3, 0<=k<=floor(n/3), read by rows.
%H Andrew Howroyd, <a href="/A238190/b238190.txt">Table of n, a(n) for n = 3..974</a>
%H Christopher Hunt Gribble, <a href="/A238009/a238009_1.cpp.txt">C++ program</a>
%e The first 13 rows of T(n,k) are:
%e .\ k 0 1 2 3 4 5
%e n
%e 3 1 1
%e 4 1 1
%e 5 1 2
%e 6 1 2 2
%e 7 1 3 4
%e 8 1 3 8
%e 9 1 4 12 3
%e 10 1 4 18 8
%e 11 1 5 24 22
%e 12 1 5 32 40 6
%e 13 1 6 40 73 22
%e 14 1 6 50 112 66
%e 15 1 7 60 172 146 10
%t T[n_, k_] := (2^k Binomial[n - 2k, k] + (Boole[EvenQ[k]] + Boole[OddQ[n] || EvenQ[k]] + Boole[k == 0]) 2^Quotient[k + 1, 2] Binomial[(n - 2k - Mod[n, 2])/2, Quotient[k, 2]])/4; Table[T[n, k], {n, 3, 20}, {k, 0, Floor[n/3]}] // Flatten (* _Jean-François Alcover_, Oct 06 2017, after _Andrew Howroyd_ *)
%o (C++) See Gribble link.
%o (PARI)
%o T(n,k)={(2^k*binomial(n-2*k,k) + ((k%2==0)+(n%2==1||k%2==0)+(k==0)) * 2^((k+1)\2)*binomial((n-2*k-(n%2))/2,k\2))/4}
%o for(n=2,20,for(k=0,floor(n/3), print1(T(n,k), ", "));print) \\ _Andrew Howroyd_, May 29 2017
%Y Cf. A034851, A226048, A102541, A226290, A238009, A228570, A225812, A238189, A228572, A228022, A231145, A231473, A231568, A232440, A228165, A238550, A238551, A238552, A228166, A238555, A238556, A228167, A238557, A238558, A238559, A228168, A238581, A238582, A238583, A228169, A238586, A238592.
%K tabf,nonn
%O 3,6
%A _Christopher Hunt Gribble_, Feb 19 2014
%E Link to C++ program and xrefs updated by _Christopher Hunt Gribble_, Apr 25 2015
%E Terms a(51) and beyond from _Andrew Howroyd_, May 29 2017