login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238184
Sum of the squares of numbers of nonconsecutive chess tableaux over all partitions of n.
2
1, 1, 1, 1, 2, 2, 4, 7, 16, 37, 107, 282, 1020, 2879, 12507, 39347, 179231, 687974, 3225246, 14955561, 75999551, 392585613, 2271201137, 12183159188, 81562521256, 446611878413, 3336304592155, 19202329389234, 152803821604669, 958953289839930, 7835058287650579
OFFSET
0,5
COMMENTS
A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells where entries m and m+1 never appear in the same row is called a nonconsecutive chess tableau.
LINKS
T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
Wikipedia, Young tableau
FORMULA
a(n) = Sum_{lambda : partitions(n)} ncc(lambda)^2, where ncc(k) is the number of nonconsecutive chess tableaux of shape k.
EXAMPLE
a(7) = 1 + 2^2 + 1 + 1 = 7:
.
: [1111111] : [22111] : [3211] : [322] : <- shapes
:-----------+--------------+---------+---------:
: [1] : [1 6] [1 4] : [1 4 7] : [1 4 7] :
: [2] : [2 7] [2 5] : [2 5] : [2 5] :
: [3] : [3] [3] : [3] : [3 6] :
: [4] : [4] [6] : [6] : :
: [5] : [5] [7] : : :
: [6] : : : :
: [7] : : : :
MAPLE
b:= proc(l, t) option remember; local n, s;
n, s:= nops(l), add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and
irem(s+i-l[i], 2)=1 and l[i]>`if`(i=n, 0, l[i+1]), b(subsop(
i=`if`(i=n and l[n]=1, [][], l[i]-1), l), i), 0), i=1..n))
end:
g:= (n, i, l)-> `if`(n=0 or i=1, b([l[], 1$n], 0)^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
a:= n-> g(n, n, []):
seq(a(n), n=0..32);
MATHEMATICA
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Total[l]}; If[s == 0, 1, Sum[If[t != i && Mod[s+i-l[[i]], 2] == 1 && l[[i]] > If[i==n, 0, l[[i+1]]], b[ReplacePart[l, i -> If[i==n && l[[n]]==1, Nothing, l[[i]]-1]], i], 0], {i, 1, n}]]]; g[n_, i_, l_] := g[n, i, l] = If[n==0 || i==1, b[Join[l, Array[1&, n]], 0]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Feb 17 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 19 2014
STATUS
approved