login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237993
a(n) = Abs(StirlingS1(3*n,n)).
2
1, 2, 274, 118124, 105258076, 159721605680, 369012649234384, 1206647803780373360, 5304713715525445812976, 30180059720580991603896800, 215760462268683520394805979744, 1893448925578239663637174767335168, 20012008248418194052035539503977759232
OFFSET
0,2
FORMULA
a(n) ~ n^(2*n) * c^(3*n) * 3^(5*n) / (sqrt(6*Pi*(c-1)*n) * exp(2*n) * (3*c-1)^(2*n)), where c = -LambertW(-1,-exp(-1/3)/3) = 2.237147027773716818...
MAPLE
seq(abs(Stirling1(3*n, n)), n=0..20);
MATHEMATICA
Table[Abs[StirlingS1[3*n, n]], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 20 2014
STATUS
approved