OFFSET
1,6
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 4.
(ii) For any integer n > 11, there is a prime p < n such that the number of Sophie Germain primes among 1, ..., n-p is a square.
See also A237817 for a similar conjecture involving twin primes.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
EXAMPLE
a(5) = 1 since there are exactly two Sophie Germain primes not exceeding 5-2 = 3, and 2 is a Sophie Germain prime.
MATHEMATICA
sg[n_]:=PrimeQ[n]&&PrimeQ[2n+1]
sum[n_]:=Sum[If[PrimeQ[2Prime[k]+1], 1, 0], {k, 1, PrimePi[n]}]
a[n_]:=Sum[If[sg[sum[n-Prime[k]]], 1, 0], {k, 1, PrimePi[n-1]}]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 13 2014
STATUS
approved