login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237655
G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-2)*Fibonacci(n+2) * x^n/n ).
2
1, 10, 50, 175, 510, 1376, 3625, 9500, 24875, 65125, 170500, 446375, 1168625, 3059500, 8009875, 20970125, 54900500, 143731375, 376293625, 985149500, 2579154875, 6752315125, 17677790500, 46281056375, 121165378625, 317215079500, 830479859875, 2174224500125, 5692193640500, 14902356421375, 39014875623625
OFFSET
0,2
COMMENTS
Given g.f. A(x), note that A(x)^(1/5) is not an integer series.
FORMULA
G.f.: (1+x)^7 / (1-3*x+x^2).
a(n) = 3*a(n-1) - a(n-2), n>=8. - Fung Lam, May 19 2014
EXAMPLE
G.f.: A(x) = 1 + 10*x + 50*x^2 + 175*x^3 + 510*x^4 + 1376*x^5 + 3625*x^6 + ...
where the logarithm begins:
log(A(x)) = 5*1*2*x + 5*0*3*x^2/2 + 5*1*5*x^3/3 + 5*1*8*x^4/4 + 5*2*13*x^5/5 + 5*3*21*x^6/6 + 5*5*34*x^7/7 + 5*8*55*x^8/8 + 5*13*89*x^9/9 + ...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-2)*fibonacci(m+2) *x^m/m) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A051230 A008413 A006542 * A261648 A086462 A201830
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 05 2014
STATUS
approved