login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237648
G.f. satisfies: A(x) = (1 + x + x^2) * A(x^2)^4.
3
1, 1, 5, 4, 30, 26, 106, 80, 459, 379, 1451, 1072, 5210, 4138, 14894, 10756, 47617, 36861, 127949, 91088, 376264, 285176, 957336, 672160, 2640964, 1968804, 6452260, 4483456, 16921416, 12437960, 39873688, 27435728, 100259070, 72823342, 229410006, 156586664, 556880812, 400294148
OFFSET
0,3
LINKS
FORMULA
The 7th self-convolution yields A237647.
G.f. A(x) satisfies:
(1) A(x) = Product_{n>=0} ( 1 + x^(2^n) + x^(2*2^n) )^(4^n).
(2) A(x) / A(-x) = (1+x+x^2) / (1-x+x^2).
Bisections: let A(x) = B(x^2) + x*C(x^2), then
(3) B(x) = (1+x) * C(x).
(4) C(x) = A(x)^4 = (1+x+x^2)^4 * C(x^2)^4.
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 4*x^3 + 30*x^4 + 26*x^5 + 106*x^6 + 80*x^7 + 459*x^8 +...
such that A(x) = (1+x+x^2) * A(x^2)^4, where:
A(x)^4 = 1 + 4*x + 26*x^2 + 80*x^3 + 379*x^4 + 1072*x^5 + 4138*x^6 + 10756*x^7 +...
The g.f. may thus be expressed by the product:
A(x) = (1+x+x^2) * (1+x^2+x^4)^4 * (1+x^4+x^8)^16 * (1+x^8+x^16)^64 *...
Note that x*A(x^2)^7 is the odd bisection of the g.f. G(x) of A237646:
A(x)^7 = 1 + 7*x + 56*x^2 + 273*x^3 + 1463*x^4 + 6048*x^5 + 26537*x^6 + 97903*x^7 +...+ A237647(n)*x^n +...
G(x) = (1+x+x^2)*A(x^2)^7 = 1 + x + 8*x^2 + 7*x^3 + 63*x^4 + 56*x^5 + 329*x^6 + 273*x^7 + 1736*x^8 + 1463*x^9 + 7511*x^10 + 6048*x^11 +...+ A237646(n)*x^n +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, #binary(n), A=(1+x+x^2)*subst(A^4, x, x^2) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); A=prod(k=0, #binary(n), (1+x^(2^k)+x^(2*2^k)+x*O(x^n))^(4^k)); polcoeff(A, n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Sequence in context: A192778 A051138 A157101 * A091001 A297936 A298548
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 03 2014
STATUS
approved