OFFSET
1,2
COMMENTS
A028839 is the sequence of positive integers such that n^2 divided by the sum of the digits is a rational square. For this sequence, it is required to be an integer square. - Franklin T. Adams-Watters, Oct 30 2014
The sequence is infinite since if m = 10^j then m^2 / digitsum(m) = m^2. - Marius A. Burtea, Dec 21 2018
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
EXAMPLE
153 is in the sequence because the digital sum of 153 is 9, and 153^2/9 = 2601 = 51^2.
MAPLE
filter:= n -> issqr(n^2/convert(convert(n, base, 10), `+`)):
select(filter, [$1..10000]); # Robert Israel, Oct 30 2014
MATHEMATICA
Select[Range[500], IntegerQ[Sqrt[#^2/Total[IntegerDigits[#]]]]&] (* Harvey P. Dale, Nov 19 2014 *)
PROG
(PARI) s=[]; for(n=1, 600, d=sumdigits(n); if(n^2%d==0 && issquare(n^2\d), s=concat(s, n))); s
(Magma) [n: n in [1..1500] | IsIntegral((n^2)/(&+Intseq(n))) and IsSquare((n^2)/(&+Intseq(n)))]; // Marius A. Burtea, Dec 21 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Colin Barker, Jan 30 2014
STATUS
approved