login
A236441
Möbius inversion of A235342.
2
0, 1, 0, 1, -2, 0, -1, 1, 0, 0, -2, 0, -2, 0, 0, 1, -2, 0, -1, 0, 0, 0, 2, 0, -2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -2, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 7, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 5, 0, 1, 0, 0, 0, -2, 0, -2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -2
OFFSET
1,5
COMMENTS
Möbius inversion of A235342. Since b(xy) = b(x)+b(y) where b = A235342, it follows that a(n) is zero on nonprime powers and b(p) if n=p^k.
LINKS
Alexander Riasanovsky, Sage program
FORMULA
For n > 0, a(n) = Sum_{d|n} b(d)*mu(n/d) where b(n) = A235342(n).
EXAMPLE
a(1)=0 since 1 is not a prime power.
a(2)=b(2)=1 since 2=2! and b(2!)=1.
a(3)=b(3)=0 since 3=3!/2! and b(3!/2!)=b(3!)-b(2!)=1-1=0.
a(4)=b(2)=1 (above).
a(5)=b(5)=-2 since 5=5!/(3!2!2!) and b(5!/(3!2!2!))=1-3=-2.
a(6)=0 since 6 is not a prime power.
CROSSREFS
Möbius inversion of A235342.
Sequence in context: A214772 A332036 A242444 * A327695 A345446 A354911
KEYWORD
sign
AUTHOR
EXTENSIONS
Data section extended and b-file computed with Riasanovsky's Sage program by Antti Karttunen, Mar 28 2017
STATUS
approved