login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sigma(n,1) * sigma(n,2) * ... * sigma(n,n).
3

%I #15 Aug 21 2019 11:13:18

%S 1,15,1120,2929563,38464354656,80529415686720000,

%T 538252697895729090560000,1045011472134222568417452736171875,

%U 14983270528936392555878952946810076508388237,30023920804570215919584229032152609459437167079578240000

%N a(n) = sigma(n,1) * sigma(n,2) * ... * sigma(n,n).

%C sigma(n, k) is the sum of the k-th powers of the divisors of n.

%H Vaclav Kotesovec, <a href="/A236329/b236329.txt">Table of n, a(n) for n = 1..35</a>

%F log(a(n)) ~ n*(n+1)*log(n)/2. - _Vaclav Kotesovec_, Aug 21 2019

%e a(4) = sigma(4,1)*sigma(4,2)*sigma(4,3)*sigma(4,4) = 7*21*73*273 = 2929563.

%p with(NumberTheory): seq(product(sigma[k](n), k = 1..n), n = 1..10); # _Vaclav Kotesovec_, Aug 20 2019

%t Table[Times@@DivisorSigma[Range[n],n],{n,10}] (* _Harvey P. Dale_, Oct 21 2017 *)

%o (PARI) vector(12, n, prod(k=1, n, sigma(n, k)))

%Y Cf. A236328.

%Y Cf. A000203, A001157, A001158, A001159, A001160.

%K nonn

%O 1,2

%A _Colin Barker_, Jan 22 2014