Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Nov 06 2024 04:11:35
%S 1,8,42,374,3910,57210,960806,19261858,435877581,11123320196,
%T 313842837682,9729290348244,328114698808286,11967567841654606,
%U 469172063576559644,19676848703371278522,878942778254232811954,41661071646298278566886,2088331858752553232964218
%N a(n) = sigma(n,1) + sigma(n,2) + ... + sigma(n,n).
%C Sigma(n,k) is the sum of the k-th powers of the divisors of n.
%C The sequence seems to be strictly increasing. - _Chayim Lowen_, Aug 05 2015.
%C This is true. Moreover, subsequent ratios a(n+1)/a(n) steadily grow for n>3. The difference of subsequent ratios tends to the limit e = 2.718... The reason is that a(n) roughly behaves like n^n; already the second largest term in the sum is smaller by a factor 2^n (for even n) or by a factor 3^n (for n=6k+3) etc. - _M. F. Hasler_, Aug 16 2015
%H Robert Israel, <a href="/A236328/b236328.txt">Table of n, a(n) for n = 1..353</a>
%F a(n) = n + Sum_{d|n, d>1} d*(d^n-1)/(d-1). - _Chayim Lowen_, Aug 02 2015
%F a(n) >= n*(n^n+n-2)/(n-1) for n>1. - _Chayim Lowen_, Aug 05 2015
%F a(n) = A065805(n)-A000005(n). - _Chayim Lowen_, Aug 11 2015
%e a(4) = sigma(4,1) + sigma(4,2) + sigma(4,3) + sigma(4,4) = 7 + 21 + 73 + 273 = 374.
%p seq(add(numtheory:-sigma[k](n), k=1..n), n=1..50); # _Robert Israel_, Aug 04 2015
%t Table[Sum[DivisorSigma[i, n], {i, n}], {n, 19}] (* _Michael De Vlieger_, Aug 06 2015 *)
%t f[n_] := Sum[DivisorSigma[i, n], {i, n}]; (* OR *) f[n_] := Block[{d = Rest@Divisors@n}, n + Total[(d^(n + 1) - d)/(d - 1)]]; (* then *) Array[f, 19] (* _Robert G. Wilson v_, Aug 06 2015 *)
%o (PARI) vector(30, n, sum(k=1, n, sigma(n, k)))
%o (PARI) vector(30, n, n + sumdiv(n, d, if (d>1,(d^(n+1)-d)/(d-1)))) \\ _Michel Marcus_, Aug 04 2015
%Y Cf. A000203, A001157, A001158, A001159, A001160, A109974.
%Y Cf. A000005, A065805.
%Y Cf. A236329.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Jan 22 2014