login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236036
a(n) is the smallest (2n+1)-digit prime number whose central digit equals the sum of its other digits.
1
10513, 1005013, 100040201, 10000400021, 1000004000111, 100000040002001, 10000000400000111, 1000000004000100011, 100000000040000000021, 10000000000400010000011, 1000000000004000000000111, 100000000000040000010000101, 10000000000000400000000011001
OFFSET
2,1
COMMENTS
Sequence starts at n=2, since no such 3-digit prime exists.
LINKS
EXAMPLE
a(3) = 1005013 because the central digit 5 equals the sum of the other digits 1+0+0+0+1+3.
MAPLE
with(numtheory):for n from 2 to 10 do:m:=2*n-2:ii:=1:ii:=0:for k from 10^m to 10^(m+1)-1 while(ii=0)do:x:=convert(k, base, 10):n1:=nops(x):s:=sum('x[j]', 'j'=1..n1):s1:=s-x[n]:if x[n]=s1 and type(k, prime)=true then ii:=1: printf ( "%d %d \n", n, k):else fi:od:od:
MATHEMATICA
a[n_] := Catch@Block[{p}, Do[p = Select[ Union[ FromDigits /@ Flatten[ Permutations /@ (IntegerPartitions[d + n - 1, {n}, Range@d] - 1), 1]] + d*10^n + 10^(2*n), PrimeQ, 1]; If[p != {}, Throw@p[[1]]], {d, {4, 5}}]]; a /@ Range[2, 14] (* Giovanni Resta, Jan 20 2014 *)
PROG
(PARI) isspecial(p, n) = {d = digits(p); s = sumdigits(p); d[n+1] == (s - d[n+1]); }
a(n) = {forprime (p = 10^(2*n), 10^(2*n+1), if (isspecial(p, n), return (p)); ); return (0); } \\ Michel Marcus, Jan 19 2014
CROSSREFS
Sequence in context: A348758 A214192 A235119 * A216489 A120500 A371623
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Jan 18 2014
EXTENSIONS
a(9)-a(14) from Giovanni Resta, Jan 20 2014
Name simplified by Jon E. Schoenfield, Sep 09 2017
STATUS
approved