login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235864
G-Lehmer numbers: Composite numbers k such that A060968(k) divides A201629(k).
2
15, 143, 255, 385, 3599, 5183, 11663, 32399, 34561, 36863, 51983, 57599, 65535, 97343, 121103, 147455, 176399, 186623, 195841, 359999, 435599, 685583, 1034881, 1040399, 1065023, 1192463, 1327103, 1742399, 2039183, 2108303, 2214143, 2585663, 2624399, 2782223, 3196943
OFFSET
1,1
LINKS
José María Grau, Antonio M. Oller-Marcén, Manuel Rodríguez, and Daniel Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, Czechoslovak Mathematical Journal, Vol. 65 (2015), pp. 969-982; arXiv preprint, arXiv:1401.4708 [math.NT], 2014.
MATHEMATICA
fa=FactorInteger; phi[p_, s_] := Which[Mod[p, 4] == 1, p^(s-1)*(p-1), Mod[p, 4]==3, p^(s-1)*(p+1), s==1, 2, True, 2^(s+1)]; phi[1]=1; phi[n_] := Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i, Length[fa[n]]}]; Select[Range[1000], IntegerQ[FU[#]/phi[#]] && PrimeQ[#] == False &]
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(29)-a(35) from Amiram Eldar, Nov 24 2023
STATUS
approved