login
A235467
Primes whose base-4 representation also is the base-3 representation of a prime.
2
2, 89, 137, 149, 281, 293, 353, 389, 409, 421, 593, 613, 661, 1097, 1109, 1289, 1301, 1321, 1381, 1409, 1601, 1609, 1669, 2069, 2129, 2309, 2377, 2389, 2729, 4133, 4229, 4373, 4441, 4513, 4673, 5153
OFFSET
1,1
COMMENTS
This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
This is a subsequence of A002144, A002313, A003655, A050150, A062090, A141293, A175768, A192592, A226181 (conjectural).
EXAMPLE
E.g., 89 = 1121_4 and 1121_3 = 43 both are prime.
MATHEMATICA
b4b3Q[n_]:=Module[{b4=IntegerDigits[n, 4]}, Max[b4]<3&&PrimeQ[ FromDigits[ b4, 3]]]; Select[Prime[Range[700]], b4b3Q] (* Harvey P. Dale, Dec 14 2021 *)
PROG
(PARI) is(p, b=3, c=4)=vecmax(d=digits(p, c))<b&&isprime(vector(#d, i, b^(#d-i))*d~)&&isprime(p)
(PARI) forprime(p=1, 1e3, is(p, 4, 3)&&print1(vector(#d=digits(p, 3), i, 4^(#d-i))*d~, ", ")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(., 3, 4)
CROSSREFS
Cf. A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.
Sequence in context: A105268 A139881 A161676 * A249305 A023302 A041967
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Jan 12 2014
STATUS
approved