login
A234531
Pentagonal numbers which are the arithmetic mean of two consecutive primes.
1
12, 176, 376, 532, 590, 3015, 4510, 4676, 7315, 7526, 7957, 8855, 12650, 15555, 17120, 19437, 20126, 22265, 25676, 29330, 30175, 40755, 48510, 54626, 78547, 82017, 91390, 97410, 101270, 102051, 102835, 105205
OFFSET
1,1
COMMENTS
The n-th pentagonal number is (3*n^2 - n)/2 = n*(3*n - 1)/2.
LINKS
EXAMPLE
376 is in the sequence because 376 = 16*(3*16 - 1)/2 = (373 + 379)/2, the arithmetic mean of two consecutive primes.
532 is in the sequence because 532 = 19*(3*19 - 1)/2 = (523 + 541)/2, the arithmetic mean of two consecutive primes.
MAPLE
KD := proc() local a, b, d, g; a:= n*(3*n-1)/2; b:=prevprime(a); d:=nextprime(b); g:=(b+d)/2; if a=g then RETURN (a); fi; end: seq(KD(), n = 2..500);
MATHEMATICA
Select[PolygonalNumber[5, Range[300]], !PrimeQ[#]&&#==(NextPrime[ #]+ NextPrime[ #, -1])/2&] (* Harvey P. Dale, Dec 26 2022 *)
PROG
(PARI) lista(nn) = for (n=1, nn, pn = n*(3*n-1)/2; if (pn > 2, precp = precprime(pn-1); if (pn == (precp + nextprime(precp+1))/2, print1(pn, ", ")))) \\ Michel Marcus, Dec 30 2013
CROSSREFS
Cf. A000326 (pentagonal numbers: n * (3 * n - 1 ) / 2).
Cf. A069495 (squares: arithmetic mean of two consecutive primes).
Cf. A234240 (cubes: arithmetic mean of three consecutive primes).
Sequence in context: A099930 A307549 A052208 * A045952 A227714 A358951
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Dec 27 2013
EXTENSIONS
Erroneous term 5 removed by Michel Marcus, Dec 30 2013
STATUS
approved