login
Number of (n+1) X (5+1) 0..2 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2 (constant-stress 1 X 1 tilings).
1

%I #12 Jun 20 2022 21:33:28

%S 560,754,1100,1816,3188,6076,11876,24340,50180,107044,227780,500356,

%T 1090628,2457796,5468996,12611140,28568900,67202884,154536260,

%U 369513796,859910468,2082568516,4890632516,11957948740,28269265220,69599027524

%N Number of (n+1) X (5+1) 0..2 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 2 (constant-stress 1 X 1 tilings).

%H R. H. Hardin, <a href="/A234263/b234263.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) + 6*a(n-2) - 24*a(n-3) + 4*a(n-4) + 36*a(n-5) - 24*a(n-6).

%F Empirical g.f.: 2*x*(280 - 463*x - 2261*x^2 + 3716*x^3 + 3498*x^4 - 5580*x^5) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)*(1 - 6*x^2)). - _Colin Barker_, Oct 14 2018

%e Some solutions for n=5:

%e 2 2 0 0 0 2 2 0 2 1 0 0 2 0 0 2 2 2 0 1 0 1 0 1

%e 2 0 0 2 0 0 0 0 0 1 2 0 0 0 2 2 0 2 2 1 2 1 2 1

%e 0 0 2 2 2 0 2 0 2 1 0 0 2 0 0 2 2 2 0 1 0 1 0 1

%e 0 2 2 0 2 2 0 0 0 1 2 0 0 0 2 2 0 2 1 0 1 0 1 0

%e 0 0 2 2 2 0 2 0 2 1 0 0 0 2 2 0 0 0 0 1 0 1 0 1

%e 2 0 0 2 0 0 0 0 0 1 2 0 2 2 0 0 2 0 1 0 1 0 1 0

%Y Column 5 of A234266.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 22 2013