login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233903
T(n,k)=Number of (n+1)X(k+1) 0..6 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 35 (35 maximizes T(1,1))
7
144, 656, 656, 2688, 2944, 2688, 12288, 12152, 12152, 12288, 51200, 62064, 47232, 62064, 51200, 233984, 278416, 267792, 267792, 278416, 233984, 987136, 1521520, 1194976, 1795420, 1194976, 1521520, 987136, 4503552, 7123728, 8198512, 9063944
OFFSET
1,1
COMMENTS
Table starts
......144........656........2688........12288........51200.......233984
......656.......2944.......12152........62064.......278416......1521520
.....2688......12152.......47232.......267792......1194976......8198512
....12288......62064......267792......1795420......9063944.....78303216
....51200.....278416.....1194976......9063944.....45063232....522622840
...233984....1521520.....8198512.....78303216....522622840...7039959748
...987136....7123728....39075520....418952968...2708218400..48247033760
..4503552...40312912...304813760...4481613904..47900472896.957603465060
.19185664..192972032..1473291680..23800307888.237397419968
.87351296.1110694824.12478506368.300386468800
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 44*a(n-2) -608*a(n-4) +2560*a(n-6)
k=2: [order 26]
k=3: [order 69]
EXAMPLE
Some solutions for n=3 k=4
..3..6..2..6..5....4..3..0..2..5....3..4..2..1..3....3..5..2..4..2
..2..4..5..4..2....0..2..4..3..1....2..6..3..5..4....1..4..6..5..6
..6..3..1..3..0....4..3..0..2..5....5..4..2..1..3....5..3..2..4..2
..2..4..5..4..2....0..2..4..3..1....2..6..3..5..2....1..4..0..1..0
CROSSREFS
Sequence in context: A137885 A204398 A204391 * A233897 A250428 A033696
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 17 2013
STATUS
approved