login
A233877
Number of (n+1) X (2+1) 0..2 arrays with every 2 X 2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11.
1
76, 300, 1224, 5156, 22020, 95464, 415092, 1819604, 7964808, 35055940, 153816132, 677977352, 2977325268, 13129922932, 57677272968, 254401366820, 1117656904164, 4930047668872, 21659909682612, 95545254192788, 419778763578888
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 19*a(n-2) - 60*a(n-3) + 8*a(n-4) + 36*a(n-5) - 12*a(n-6).
Empirical g.f.: 4*x*(19 + 18*x - 280*x^2 + 86*x^3 + 172*x^4 - 64*x^5) / ((1 - 3*x + x^2)*(1 - 20*x^2 + 12*x^4)). - Colin Barker, Oct 12 2018
EXAMPLE
Some solutions for n=5:
..0..2..2....0..0..2....0..2..0....2..2..2....2..0..2....2..0..2....0..1..0
..1..0..1....1..2..1....0..1..2....0..1..0....1..2..1....0..1..2....2..0..2
..2..2..0....2..0..2....0..2..0....0..2..0....0..2..0....2..2..0....1..0..1
..1..0..1....2..1..2....2..1..2....0..1..0....1..0..1....0..1..0....2..2..2
..2..0..2....2..0..2....0..2..0....0..2..2....2..2..0....0..2..0....0..1..0
..1..2..1....0..1..0....0..1..0....2..1..0....1..0..1....1..2..1....2..2..2
CROSSREFS
Column 2 of A233883.
Sequence in context: A153676 A060316 A005571 * A377165 A067987 A167586
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 17 2013
STATUS
approved