login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233807
Number of tilings of an n X n square using right trominoes and at most one monomino.
7
1, 1, 4, 0, 16, 128, 162, 34528, 943096, 1193600, 3525377600, 480585761344, 2033502499954, 46983507796973152, 32908187880881958736, 458324092996867592192, 83153202122213272708832688, 299769486068040749617049301344
OFFSET
0,3
EXAMPLE
a(2) = 4:
.___. .___. .___. .___.
|_| | | |_| | ._| |_. |
|___| |___| |_|_| |_|_| .
MAPLE
b:= proc(n, w, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, w, map(h->h-t, l))
else for k while l[k]>0 do od;
`if`(w, b(n, false, s(k=1, l)), 0)+
`if`(k>1 and l[k-1]=1, b(n, w, s(k=2, k-1=2, l)), 0)+
`if`(k<nops(l) and l[k+1]=1, b(n, w, s(k=2, k+1=2, l)), 0)+
`if`(k<nops(l) and l[k+1]=0, b(n, w, s(k=1, k+1=2, l))+
b(n, w, s(k=2, k+1=1, l))+
`if`(w, b(n, false, s(k=2, k+1=2, l)), 0), 0)+
`if`(k+1<nops(l) and l[k+1]=0 and l[k+2]=0,
b(n, w, s(k=2, k+1=2, k+2=2, l)), 0)
fi
end:
a:= n-> b(n, evalb(irem(n, 3)>0), [0$n]): s:= subsop:
seq(a(n), n=0..10);
MATHEMATICA
$RecursionLimit = 1000; s = ReplacePart; b[n_, w_, l_] := b[n, w, l] = Module[{k, t}, Which[Max[l] > n, 0, n == 0, 1, Min[l] > 0, t = Min[l]; b[n-t, w, l-t], True, For[k = 1, l[[k]] > 0, k++ ]; If[w, b[n, False, s[l, k -> 1]], 0]+If[k > 1 && l[[k-1]] == 1, b[n, w, s[l, {k -> 2, k-1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 1, b[n, w, s[l, {k -> 2, k+1 -> 2}]], 0] + If[k < Length[l] && l[[k+1]] == 0, b[n, w, s[l, {k -> 1, k+1 -> 2}]]+b[n, w, s[l, {k -> 2, k+1 -> 1}]] + If[w, b[n, False, s[l, {k -> 2, k+1 -> 2}]], 0], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, w, s[l, {k -> 2, k+1 -> 2, k+2 -> 2}]], 0] ] ]; a[n_] := b[n, Mod[n, 3] > 0, Array[0 &, n]]; Table[Print[an = a[n]]; an, {n, 0, 16}] (* Jean-François Alcover, Dec 30 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 16 2013
EXTENSIONS
a(17) from Alois P. Heinz, Sep 24 2014
STATUS
approved