login
A233346
Primes of the form p(k)^2 + q(m)^2 with k > 0 and m > 0, where p(.) is the partition function (A000041), and q(.) is the strict partition function (A000009).
17
2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 101, 109, 113, 137, 149, 157, 193, 229, 241, 349, 373, 509, 709, 733, 1033, 1049, 1213, 1249, 1453, 1493, 1669, 1789, 2141, 2237, 2341, 2917, 3037, 3137, 3361, 4217, 5801, 5897, 6029, 6073, 8821, 10301, 10937, 11057, 18229, 18289, 19249, 20173, 20341, 20389, 21017, 24001, 30977, 36913, 42793
OFFSET
1,1
COMMENTS
Conjecture: The sequence contains infinitely many terms.
This follows from part (i) of the conjecture in A233307. Similarly, the conjecture in A232504 implies that there are infinitely many primes of the form p(k) + q(m) with k and m positive integers.
LINKS
Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166 [math.NT], 2013-2014.
EXAMPLE
a(1) = 2 since p(1)^2 + q(1)^2 = 1^2 + 1^2 = 2.
a(2) = 5 since p(1)^2 + q(3)^2 = 1^2 + 2^2 = 5.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
n=0
Do[If[Mod[Prime[m]+1, 4]>0, Do[If[PartitionsP[j]>=Sqrt[Prime[m]], Goto[aa],
If[SQ[Prime[m]-PartitionsP[j]^2]==False, Goto[bb], Do[If[PartitionsQ[k]^2==Prime[m]-PartitionsP[j]^2,
n=n+1; Print[n, " ", Prime[m]]; Goto[aa]]; If[PartitionsQ[k]^2>Prime[m]-PartitionsP[j]^2, Goto[bb]]; Continue, {k, 1, 2*Sqrt[Prime[m]]}]]];
Label[bb]; Continue, {j, 1, Sqrt[Prime[m]]}]];
Label[aa]; Continue, {m, 1, 4475}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 07 2013
STATUS
approved