login
A233335
E.g.f. A(x) satisfies: A( Integral 1/A(x) dx ) = exp(x).
4
1, 1, 2, 7, 38, 292, 2975, 38350, 604433, 11351659, 249042701, 6283114723, 179995680530, 5794486077958, 207806806310354, 8241414107222095, 359171801820266717, 17107537203463252273, 886296777786378900077, 49732564234138336160086, 3011177123882906437153214, 196063383282648338166793297
OFFSET
0,3
LINKS
FORMULA
E.g.f. satisfies: A(x) = exp( Series_Reversion( Integral 1/A(x) dx ) ).
E.g.f.: exp(G(x)) where G(x) = exp(G(G(x))) is the e.g.f. of A214645.
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 38*x^4/4! + 292*x^5/5! + 2975*x^6/6! +...
Related expansions.
Integral 1/A(x) dx = x - x^2/2! - x^4/4! - 6*x^5/5! - 52*x^6/6! - 591*x^7/7! - 8404*x^8/8! +...
The series reversion of Integral 1/A(x) dx equals log(A(x)) and begins:
log(A(x)) = x + x^2/2! + 3*x^3/3! + 16*x^4/4! + 126*x^5/5! + 1333*x^6/6! + 17895*x^7/7! + 293461*x^8/8! +...+ A214645(n)*x^n/n! +...
and equals the e.g.f. of A214645.
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(serreverse(intformal(1/A+x*O(x^n))))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A233336, A214645 (log).
Sequence in context: A084552 A094664 A001858 * A000366 A341381 A106211
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2013
STATUS
approved