login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (7^(n+1) - 4) / 3.
3

%I #23 Jul 05 2023 16:24:42

%S 1,15,113,799,5601,39215,274513,1921599,13451201,94158415,659108913,

%T 4613762399,32296336801,226074357615,1582520503313,11077643523199,

%U 77543504662401,542804532636815,3799631728457713,26597422099203999,186181954694428001

%N a(n) = (7^(n+1) - 4) / 3.

%C Sum of n-th row of triangle of powers of 7: 1; 7 1 7; 49 7 1 7 49; 343 49 7 1 7 49 343; ...

%H Vincenzo Librandi, <a href="/A233326/b233326.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-7).

%F G.f.: (1+7*x)/((1-x)*(1-7*x)).

%F a(n) = 8*a(n-1) - 7*a(n-2) for n>1, a(0)=1, a(1)=15.

%F a(n) = 7*a(n-1) + 8 for n>0, a(0)=1.

%e a(0) = 1;

%e a(1) = 7 + 1 + 7 = 15;

%e a(2) = 49 + 7 + 1 + 7 + 49 = 113;

%e a(3) = 343 + 49 + 7 + 1 + 7 + 49 + 343 = 799; etc.

%t Table[(7^(n + 1) - 4)/3, {n, 0, 40}] (* _Vincenzo Librandi_, Feb 25 2014 *)

%t LinearRecurrence[{8,-7},{1,15},30] (* _Harvey P. Dale_, Jul 05 2023 *)

%o (Magma) [(7^(n+1)-4)/3: n in [0..30]]; // _Vincenzo Librandi_, Feb 25 2014

%K nonn,easy

%O 0,2

%A _Philippe Deléham_, Feb 23 2014