login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233045
1^m + 2^m + ... + m^m (mod m) for primary pseudoperfect numbers m.
2
1, 1, 1, 1, 5797, 272753965, 8749232767, 1045741078641946876220133713545
OFFSET
1,5
COMMENTS
A031971(m) (mod m) for m in A054377 = 2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086. The known values of m for which 1^m + 2^m + ... + m^m == 1 (mod m) are m = 1, 2, 6, 42, 1806.
For any m and prime p | m, use Sum_{j=1..m} j^m == -m/p (mod p) if p-1 | m or == 0 (mod p) otherwise (see Lemma 3 in Grau et al.) and the Chinese Remainder Theorem.
LINKS
J. M. Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^m + 2^m + ... + m^m == n (mod m) with n|m, arXiv:1309.7941 [math.NT].
FORMULA
a(n) = 1 for n = 1, 2, 3, 4.
EXAMPLE
The 1st primary pseudoperfect number is 2, and 1^2 + 2^2 = 5 == 1 (mod 2), so a(1) = 1.
MATHEMATICA
ps={2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086}; fa = FactorInteger; VonStaudt[n_] := Mod[n - Sum[If[IntegerQ[n/(fa[n][[i, 1]] - 1)], n/fa[n][[i, 1]], 0], {i, Length[fa[n]]}], n]; Table[VonStaudt[ps[[i]]], {i, 1, 8}]
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Jonathan Sondow, Dec 10 2013
STATUS
approved