login
A232891
Least positive integer m <= n^2/2 + 3 such that {k*prime(k): k = 1,...,m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.
1
1, 3, 4, 11, 7, 7, 10, 17, 43, 13, 51, 22, 51, 36, 31, 49, 64, 71, 119, 73, 86, 68, 141, 110, 153, 85, 83, 86, 144, 81, 174, 127, 115, 87, 122, 138, 143, 134, 133, 142, 211, 229, 152, 104, 109, 177, 259, 142, 194, 176, 196, 311, 312, 193, 243, 197, 396, 169, 156, 171
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0.
(ii) For any positive integer n not equal to 3, the number n*prime(n) + 1 cannot be a power x^m with m > 1.
(iii) There are infinitely many positive integers n with n - 1, n + 1, n + prime(n), n + prime(n)^2, n^2 + prime(n), n^2 + prime(n)^2 all prime.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Zhi-Wei Sun)
EXAMPLE
a(3) = 4 since 1*prime(1) = 2, 2*prime(2) === 3*prime(3) == 0 (mod 3), and 4*prime(4) = 28 == 1 (mod 3).
MATHEMATICA
L[m_, n_]:=Length[Union[Table[Mod[k*Prime[k], n], {k, 1, m}]]]
Do[Do[If[L[m, n]==n, Print[n, " ", m]; Goto[aa]], {m, 1, n^2/2+3}];
Print[n, " ", counterexample]; Label[aa]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 02 2013
STATUS
approved