login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232685
G.f. A(x) = Sum_{n>=0} A_{2*n}(x)^(n+1) where A_{n+1}(x) = A_n(A(x)) with A_0(x)=x and A(0)=0.
0
1, 1, 5, 41, 433, 5361, 74261, 1120425, 18103665, 309717425, 5565231157, 104412465657, 2036253013681, 41135481319057, 858451844220693, 18465879790697993, 408688667270448497, 9292446000697905585, 216785984417061963573, 5183523630387054518873, 126912390721343458211761
OFFSET
1,3
FORMULA
G.f. satisfies: A_{k}(x) = Sum_{n>=0} A_{2*n+k}(x)^(n+1).
EXAMPLE
G.f.: A(x) = x + x^2 + 5*x^3 + 41*x^4 + 433*x^5 + 5361*x^6 + 74261*x^7 +...
where
A(x) = x + A(A(x))^2 + A(A(A(A(x))))^3 + A(A(A(A(A(A(x))))))^4 +...
A(A(x)) = A(x) + A(A(A(x)))^2 + A(A(A(A(A(x)))))^3 + A(A(A(A(A(A(A(x)))))))^4 +...
The series reversion of A(x) may be expressed by the series:
A_{-1}(x) = x - A(x)^2 - A(A(A(x)))^3 - A(A(A(A(A(x)))))^4 - A(A(A(A(A(A(A(x)))))))^5 -...
Explicitly,
A(A(x)) = x + 2*x^2 + 12*x^3 + 108*x^4 + 1212*x^5 + 15696*x^6 + 225364*x^7 +...
A_{-1}(x) = x - x^2 - 3*x^3 - 21*x^4 - 203*x^5 - 2365*x^6 - 31275*x^7 - 454413*x^8 -...
PROG
(PARI) {a(n)=local(A=x, G, S); if(n<1, 0, for(j=1, n, G=x; S=x; for(i=2, n, G=subst(A, x, subst(A, x, G+x*O(x^n))); S=S+G^i); A=S); polcoeff(A+x*O(x^n), n))}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A154757.
Sequence in context: A329123 A375437 A285064 * A081215 A218219 A140095
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 30 2013
STATUS
approved