login
A231980
Imaginary part of first nontrivial Riemann zeta zero divided by Pi.
0
4, 4, 9, 9, 2, 2, 2, 7, 5, 1, 1, 0, 4, 7, 3, 4, 8, 4, 8, 4, 8, 6, 5, 4, 1, 4, 2, 3, 1, 8, 0, 1, 5, 7, 3, 9, 0, 1, 1, 9, 9, 8, 5, 5, 0, 5, 8, 1, 7, 7, 7, 8, 5, 7, 2, 2, 5, 0, 0, 5, 8, 9, 5, 4, 9, 2, 8, 9, 4, 0, 5, 8, 3, 0, 1, 4, 6, 7, 7, 2, 7, 9, 5, 2, 8, 1, 2, 2, 0, 1, 5, 7, 6, 9, 6, 3, 7, 9, 7, 1, 3, 8, 4, 1, 3
OFFSET
1,1
COMMENTS
The pattern of nines and triple twos appear in the following numbers when adding one half and dividing with sqrt(5):
0.9999222720896... = sqrt(Im(ZetaZero(1))/Pi + 1/2)/sqrt(5).
4.4992227511047... = Im(ZetaZero(1))/Pi.
5.4922296657516... = Im(ZetaZero(2))/Pi - sqrt(Im(ZetaZero(2))/Pi+1/2)/sqrt(5).
2.4992229102932... = Re( lim_{s->1/ZetaZero(2)} zeta(s)*(1 - 1/6^(s-1)) ). - Mats Granvik, Mar 03 2016
FORMULA
Equals Im(ZetaZero(1))/Pi.
EXAMPLE
4.4992227511047348484865414231801573901....
MATHEMATICA
RealDigits[N[Im[ZetaZero[1]]/Pi, 105]][[1]]
PROG
(PARI) solve(y=14, 15, imag(zeta(1/2+y*I)))/Pi \\ Charles R Greathouse IV, Mar 10 2016
(PARI) lfunzeros(lzeta, [14, 15])[1]/Pi \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Sequence in context: A005441 A362294 A198497 * A175051 A011364 A016713
KEYWORD
nonn,cons
AUTHOR
Mats Granvik, Nov 16 2013
STATUS
approved