login
A231847
Primes p such that p*(p+1)/2 + 1 is a prime.
4
3, 7, 11, 19, 23, 43, 47, 71, 107, 131, 163, 167, 179, 211, 223, 251, 271, 307, 359, 419, 431, 439, 443, 467, 503, 571, 691, 751, 811, 827, 839, 863, 907, 947, 967, 971, 991, 1019, 1031, 1063, 1091, 1103, 1187, 1279, 1427, 1483, 1499, 1559, 1583, 1607, 1723, 1759, 1783
OFFSET
1,1
COMMENTS
From Bernard Schott, Sep 18 2022: (Start)
A000217(p) must be even, so these primes p satisfy p == 3 (mod 4) (A002145).
Corresponding values of A000217(p) + 1 are in A231988.
The smallest prime of the form 4*k + 3 that is not a term is 31 because A000217(31) = 496, then 496 + 1 = 497 = 7 * 71 (see Penguin reference). (End)
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 496, page 142.
EXAMPLE
A000217(3) + 1 = 3*4/2 + 1 = 7, hence 3 is a term.
MATHEMATICA
Select[Prime[Range[300]], PrimeQ[# (# + 1)/2 + 1] &] (* T. D. Noe, Nov 19 2013 *)
PROG
(PARI) isok(p) = isprime(p) && isprime(p*(p+1)/2+1); \\ Michel Marcus, Sep 19 2022
CROSSREFS
Subsequence of A002145.
Sequence in context: A191037 A292083 A135932 * A105876 A354801 A141101
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Nov 16 2013
STATUS
approved