login
A231636
Number of n X 2 0..2 arrays with no element having a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).
1
1, 5, 25, 124, 599, 2907, 14098, 68345, 331411, 1606976, 7792087, 37783439, 183209634, 888373029, 4307670407, 20887647824, 101283014043, 491115562211, 2381391364586, 11547230982705, 55991864805211, 271501360719136
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) - 11*a(n-2) + 4*a(n-3) - 14*a(n-4) + 48*a(n-5) - 48*a(n-6) + 16*a(n-7).
Empirical g.f.: x*(1 - x)^2 / (1 - 7*x + 11*x^2 - 4*x^3 + 14*x^4 - 48*x^5 + 48*x^6 - 16*x^7). - Colin Barker, Sep 29 2018
EXAMPLE
Some solutions for n=7:
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 2 0 0 2 1 0 0 1 0 0 0 1 2 2
1 0 1 0 1 2 2 2 1 2 2 1 0 1 1 0 1 2 2 2
1 2 0 0 1 2 0 2 0 1 0 2 0 2 1 0 0 2 2 0
1 1 0 1 0 1 2 0 0 0 2 0 2 2 2 2 2 1 2 0
0 2 1 2 2 0 1 2 2 1 1 1 0 2 2 2 1 1 1 2
2 2 1 1 2 2 1 1 1 1 2 1 0 1 2 0 2 1 1 1
CROSSREFS
Column 2 of A231641.
Sequence in context: A278282 A086093 A171279 * A099504 A299958 A036156
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 12 2013
STATUS
approved