login
A231536
Triangular array read by rows. T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} whose functional digraph has exactly k nodes such that no nonrecurrent element is mapped into it. n >= 1, 1 <= k <= n.
0
1, 2, 2, 6, 15, 6, 24, 108, 100, 24, 120, 840, 1340, 705, 120, 720, 7200, 17400, 15150, 5466, 720, 5040, 68040, 231000, 296100, 171402, 46921, 5040, 40320, 705600, 3198720, 5644800, 4687536, 2015272, 444648, 40320, 362880, 7983360, 46569600, 108168480, 121144464, 73191888, 25011576, 4625361, 362880
OFFSET
1,2
FORMULA
E.g.f.: 1/(1 - A(x,y)) where A(x,y) is the e.g.f. for A055302.
EXAMPLE
T(3,3) = 6 because we have: (1,2,3),(2,1,3),(3,2,1),(1,3,2),(2,3,1),(3,1,2). In these 6 functions represented as a word there are 3 (all) elements with zero nonrecurrent elements mapped to them.
1,
2, 2,
6, 15, 6,
24, 108, 100, 24,
120, 840, 1340, 705, 120,
720, 7200, 17400, 15150, 5466, 720
MATHEMATICA
nn=6; Map[Select[#, #>0&]&, Drop[Range[0, nn]!CoefficientList[Series[1/(1- (-x+x y-ProductLog[-Exp[x (-1+y)] x])), {x, 0, nn}], {x, y}], 1]]//Grid
CROSSREFS
Row sums give: A000312.
Column k=1 and main diagonal give: A000142.
Sequence in context: A142471 A323233 A071208 * A216242 A330798 A260687
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Nov 10 2013
STATUS
approved