login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230879
Number of 2-packed n X n matrices.
3
1, 2, 56, 16064, 39156608, 813732073472, 147662286695991296, 237776857718965784182784, 3425329990022686416530808209408, 443021337239562368918979788606843912192, 515203019085226443540506018909263027730003787776
OFFSET
0,2
COMMENTS
A k-packed matrix of size n X n is a matrix with entries in the alphabet A_k = {0,1, ..., k} such that each row and each column contains at least one nonzero entry.
LINKS
H. Cheballah, S. Giraudo, R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
FORMULA
Cheballah et al. give an explicit formula.
a(n) = Sum_{i=0..n} Sum_{j=0..n} (-1)^(i+j) * binomial(n,i) * binomial(n,j) * 3^(i*j). - Andrew Howroyd, Sep 20 2017
MATHEMATICA
p[k_, n_] := Sum[(-1)^(i + j)*Binomial[n, i]*Binomial[n, j]*(k + 1)^(i*j), {i, 0, n}, {j, 0, n}];
a[n_] := p[2, n];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Oct 08 2017, translated from PARI *)
PROG
(PARI) \\ here p(k, n) is number of k-packed matrices of size n.
p(k, n)={sum(i=0, n, sum(j=0, n, (-1)^(i+j) * binomial(n, i) * binomial(n, j) * (k+1)^(i*j)))}
a(n) = p(2, n); \\ Andrew Howroyd, Sep 20 2017
CROSSREFS
Row sums of A230878.
Sequence in context: A325291 A326551 A253471 * A080318 A002542 A264939
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 09 2013
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Sep 20 2017
STATUS
approved