login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n = Sum_{i=0..m} c(i)*2^i, c(i) = 0 or 1, then a(n) = Sum_{i=0..m} (m+1-i)*c(i).
38

%I #23 Mar 18 2024 05:26:25

%S 0,1,1,3,1,4,3,6,1,5,4,8,3,7,6,10,1,6,5,10,4,9,8,13,3,8,7,12,6,11,10,

%T 15,1,7,6,12,5,11,10,16,4,10,9,15,8,14,13,19,3,9,8,14,7,13,12,18,6,12,

%U 11,17,10,16,15,21,1,8,7,14,6,13,12,19,5,12,11,18,10,17,16,23,4,11,10,17,9,16,15,22,8,15,14

%N If n = Sum_{i=0..m} c(i)*2^i, c(i) = 0 or 1, then a(n) = Sum_{i=0..m} (m+1-i)*c(i).

%C Suggested by Jon Perry's A231204, only now the leading power of 2 gets weight 1.

%H Rémy Sigrist, <a href="/A230877/b230877.txt">Table of n, a(n) for n = 0..8192</a>

%e For n=13 we have 1101, so we add 1+2+4, getting a(13)=7.

%p f:=proc(n) local t1,m,i;

%p t1:=convert(n,base,2);

%p m:=nops(t1)-1;

%p add((m+1-i)*t1[i+1], i=0..m);

%p end;

%t Array[Total[Position[IntegerDigits[#, 2], 1], 2] &, 100, 0] (* _Paolo Xausa_, Mar 18 2024 *)

%o (PARI) a(n) = { my (b=binary(n)); sum(k=1, #b, b[k]*k) } \\ _Rémy Sigrist_, Jun 25 2021

%o (Python)

%o def A230877(n): return sum(i for i, j in enumerate(bin(n)[2:],1) if j=='1') # _Chai Wah Wu_, Jan 09 2023

%Y Cf. A029931, A231204, A329752.

%K nonn,base

%O 0,4

%A _N. J. A. Sloane_, Nov 08 2013