login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230232
Number of permutations of [n] avoiding adjacent step pattern {up}^9.
7
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628799, 39916779, 479001228, 6227014404, 87178179816, 1307672369640, 20922752672640, 355686706327680, 6402359109968640, 121644792614741760, 2432895242801771955, 51090787299486057355, 1123997039003038423610
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1 / Sum_{n>=0} (10*n+1-x)*x^(10*n)/(10*n+1)!.
a(n)/n! ~ c * (1/r)^n, where r = 1.0000002505217051890946793081039639693008257169189079028339632923816... is the root of the equation Sum_{n>=0} (r^(10*n)/(10*n)! - r^(10*n+1)/(10*n+1)!) = 0, c = 1.000002229648140602899529055054469878816530201510267349345270187155... . - Vaclav Kotesovec, Jan 17 2015
E.g.f.: 10 / (2/exp(x) - sqrt(2*(5 - sqrt(5))) * cosh((1/4)*(1 + sqrt(5))*x) * sin(sqrt((1/8)*(5 - sqrt(5)))*x) - sqrt(2*(5 + sqrt(5))) * cosh((1/4)*(sqrt(5) - 1)*x) * sin(sqrt((1/8)*(5 + sqrt(5)))*x) + cos(sqrt((1/8)*(5 + sqrt(5)))*x) * (4*cosh((1/4)*(sqrt(5) - 1)*x) - (sqrt(5) - 1)*sinh((1/4)*(sqrt(5) - 1)*x)) - cos(sqrt((1/8)*(5 - sqrt(5)))*x) * ((1 + sqrt(5))*sinh((1/4)*(1 + sqrt(5))*x) - 4*cosh((1/4)*(1 + sqrt(5))*x))). - Vaclav Kotesovec, Jan 31 2015
In closed form, c = 5 / (r * (sqrt(10 - 2*sqrt(5)) * cosh((sqrt(5)+1)*r/4) * sin(sqrt((5 - sqrt(5))/2)*r/2) + sqrt(2*(5 + sqrt(5))) * cosh((sqrt(5)-1)*r/4) * sin(sqrt((5 + sqrt(5))/2)*r/2))). - Vaclav Kotesovec, Feb 01 2015
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t<8, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
add(b(u-j, o+j-1, 0), j=1..u))
end:
a:= n-> b(n, 0, 0):
seq(a(n), n=0..30);
MATHEMATICA
nn=20; r=9; a=Apply[Plus, Table[Normal[Series[y x^(r+1)/(1-Sum[y x^i, {i, 1, r}]), {x, 0, nn}]][[n]]/(n+r)!, {n, 1, nn-r}]]/.y->-1; Range[0, nn]! CoefficientList[Series[1/(1-x-a), {x, 0, nn}], x] (* Geoffrey Critzer, Feb 25 2014 *)
FullSimplify[CoefficientList[Series[10/(2/E^x - Sqrt[2*(5 - Sqrt[5])]* Cosh[(1/4)*(1 + Sqrt[5])*x]* Sin[Sqrt[(1/8)*(5 - Sqrt[5])]*x] - Sqrt[2*(5 + Sqrt[5])]*Cosh[(1/4)*(Sqrt[5] - 1)* x]*Sin[Sqrt[(1/8)*(5 + Sqrt[5])]*x] + Cos[Sqrt[(1/8)*(5 + Sqrt[5])]*x]* (4*Cosh[(1/4)*(Sqrt[5] - 1)*x] - (Sqrt[5] - 1)*Sinh[(1/4)*(Sqrt[5] - 1)*x]) - Cos[Sqrt[(1/8)*(5 - Sqrt[5])]*x]* ((1 + Sqrt[5])*Sinh[(1/4)*(1 + Sqrt[5])*x] - 4*Cosh[(1/4)*(1 + Sqrt[5])*x])), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 31 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 12 2013
STATUS
approved