OFFSET
0,4
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..160
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 3.66153677891582..., c = 0.464274715544... . - Vaclav Kotesovec, Oct 29 2014
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 21*x^5 + 60*x^6 + 181*x^7 +...
where the g.f. A = A(x) satisfies:
A(x) = 1 + x*(A-x) + x^2*(A-x)*(A-x^2) + x^3*(A-x)*(A-x^2)*(A-x^3) + x^4*(A-x)*(A-x^2)*(A-x^3)*(A-x^4) + x^5*(A-x)*(A-x^2)*(A-x^3)*(A-x^4)*(A-x^5) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*prod(k=1, m, A-x^k +x*O(x^n)))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 15 2013
STATUS
approved