login
A228925
Stern's triatomic sequence.
0
1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 5, 1, 3, 5, 3, 1, 5, 1, 1, 5, 1, 3, 5, 3, 1, 5, 1, 1, 5, 1, 3, 5, 3, 1, 5, 1, 1, 7, 1, 5, 7, 5, 1, 7, 1, 3, 9, 3, 5, 9, 5, 1, 9, 3, 1, 9, 1, 5, 9, 5, 3, 9, 1, 1, 7, 1, 5, 7, 5, 1, 7, 1, 3, 9, 3, 5, 9, 5, 1, 9, 3, 1, 9, 1, 5, 9, 5, 3, 9, 1, 1, 7, 1, 5, 7, 5
OFFSET
0,6
FORMULA
Satisfies the recurrence relations
a(9n+3) = a(3n)
a(9n+4) = a(3n+1)
a(9n+5) = a(3n)+a(3n+1)+a(3n+2)
a(9n+6) = a(3n+1)
a(9n+7) = a(3n+2)
a(9n+8) = a(3n)+a(3n+1)+a(3n+2)
a(27n) = a(9n+2)
a(27n+2) = -a(9n+1)+2a(9n+2)
a(27n+9) = a(9n+2)
a(27n+10) = a(9n)
a(27n+11) = a(9n)+a(9n+1)+a(9n+2)
a(27n+18) = a(3n)+a(3n+1)+a(3n+2)
a(27n+19) = a(3n)
a(27n+20) = 2a(3n) + 2a(3n+1) + a(3n+2)
a(81n+1) = a(9n)
a(81n+28) = a(9n+1)
a(81n+55) = a(3n+1) for n >= 0.
CROSSREFS
Cf. A002487.
Sequence in context: A353517 A353487 A356308 * A230405 A101685 A238737
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Sep 08 2013
STATUS
approved