login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228826
Delayed continued fraction of sqrt(2).
6
2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1, -2, 1, 2, -1
OFFSET
0,1
COMMENTS
See A228825 for a definition of delayed continued fraction (DCF).
DCF(r) is periodic if and only if CF(r) is periodic; DCF(sqrt(n)) is shown here for selected values of n,using Mathematica notation for periodic continued fractions.
n ........ DCF(sqrt(n))
2 ........ {2, {-1,-2,1,2}}
3 ........ {{1,2,-1,-1,-2,1}}
5 ........ {3, {-2,2,-1,-2,2,-2,1,2}}
6 ........ {3, {-1,-2,2,-2,1,2}}
7 ........ {2, {1,1,2,-2,2,-1,-1,-1,-1,-2,2,-2,1,1}}
8 ........ {2, {2,-2,2,-1,-1,-2,2,-2,1,1}}
10........ {4, {-2,2,-2,2,-1,-2,2,-2,2,-2,1,2}}
FORMULA
From Colin Barker, Sep 13 2013: (Start)
a(n) = ((2-i)*(-i)^n + (2+i)*i^n)/2 where i=sqrt(-1).
a(n) = -a(n-2).
G.f.: (2-x)/(x^2+1). (End)
EXAMPLE
convergents: 2, 1, 4/3, 3/2, 10/7, 7/5, 24/17, 17/12, 58/41, 41/29, 140/99, ...
MATHEMATICA
$MaxExtraPrecision = Infinity; x[0] = Sqrt[2]; s[x_] := s[x] = If[FractionalPart[x] < 1/2, Ceiling[x], Floor[x]]; a[n_] := a[n] = s[Abs[x[n]]]*Sign[x[n]]; x[n_] := 1/(x[n - 1] - a[n - 1]); t = Table[a[n], {n, 0, 100}]
LinearRecurrence[{0, -1}, {2, -1}, 50] (* G. C. Greubel, Aug 19 2018 *)
PROG
(PARI) Vec(-(x-2)/(x^2+1) + O(x^100)) \\ Colin Barker, Sep 13 2013
(Magma) I:=[2, -1]; [n le 2 select I[n] else - Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 19 2018
CROSSREFS
KEYWORD
cofr,sign,easy
AUTHOR
Clark Kimberling, Sep 04 2013
STATUS
approved