login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228267
Number T(n,k,r) of dissections of an n X k X r rectangular cuboid into integer-sided cubes including rotations and reflections; irregular triangle T(n,k,r), n >= k >= r >= 1 read by rows.
3
1, 1, 1, 2, 1, 1, 3, 1, 5, 10, 1, 1, 5, 1, 11, 31, 1, 35, 167, 2098, 1, 1, 8, 1, 21, 76, 1, 93, 635, 15511, 1, 314, 3354, 185473, 4006722, 1, 1, 13, 1, 43, 210, 1, 269, 2887, 151378, 1, 1213, 22478, 3243515, 143662050, 1, 6427, 235150, 112411358
OFFSET
1,4
COMMENTS
The main diagonal T(n,n,n) is 1, 2, 10, 2098, 4006722, .... - R. J. Mathar and Rob Pratt, Nov 27 2017
LINKS
Christopher Hunt Gribble, C++ program
FORMULA
T(1,1,r) = T(n,n,1) = 1. - R. J. Mathar, Dec 03 2017
T(2,2,r) = A000045(r+1). - R. J. Mathar, Dec 03 2017
T(3,3,r>=1) = 1, 5, 10, 31, ... with g.f. 1/(1-x-4*x^2-x^3). - R. J. Mathar, Dec 03 2017
T(4,4,r>=1) = 1, 35, 167, 2098, 15511, 151378, 1272179, 11574563, 100928230, 900224006, ... with TBD rational g.f. - R. J. Mathar, Dec 03 2017
T(n,n,2) = A063443(n). - R. J. Mathar, Dec 03 2017
EXAMPLE
The irregular triangle begins:
. r 1 2 3 4 ...
n,k
1,1 1
2,1 1
2,2 1 2
3,1 1
3,2 1 3
3,3 1 5 10
4,1 1
4,2 1 5
4,3 1 11 31
4,4 1 35 167 2098
5,1 1
5,2 1 8
5,3 1 21 76
5,4 1 93 635 15511
5,5 1 314 3354 185473 ...
...
T(3,2,2) = 3 because there are 3 distinct dissections of a 3 X 2 X 2 rectangular cuboid into integer-sided cubes. The dissections expanded into 2 dimensions are:
._____. ._____. ._____.
|_|_|_| |_|_|_| |_|_|_|
|_|_|_| |_|_|_| |_|_|_|
._____. ._____. ._____.
| |_| | |_| | |_|
|___|_| |___|_| |___|_|
._____. ._____. ._____.
|_| | |_| | |_| |
|_|___| |_|___| |_|___|
CROSSREFS
Cf. A219924.
Sequence in context: A327981 A348447 A277606 * A170820 A339615 A003687
KEYWORD
nonn,tabf
AUTHOR
EXTENSIONS
20 more terms from R. J. Mathar, Dec 03 2017
STATUS
approved