OFFSET
2,2
COMMENTS
The hemiperfect that are obtained are coprime to p = 2*n-1.
When p=2*n-1 is prime, if m is a n-multiperfect is such that valuation(m, p) = 1, then let's define k = m/p, sigma(k) = sigma(m/p) = sigma(m)/sigma(p) = (n*m)/(p+1) = (n*m)/(2*n) = m/2. So sigma(k)/k = m/(2*k) = (k*p)/(2*k) = p/2 = (2*n-1)/2.
LINKS
Achim Flammenkamp, The Multiply Perfect Numbers Page
G. P. Michon, Multiperfect and hemiperfect numbers
EXAMPLE
a(2) = 1, since the only perfect number multiple of 3 is 6, and 6/3=2 has abundancy 3/2.
a(3) = 3, since the 3 known hemiperfect of abundancy 5/2 are coprime to 5.
a(5) = a(8) = a(11) = 0, since for those n, 2*n-1 is not prime.
a(10) is also 0, since all known 10-multiperfect are at least divisible by 19^2.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Michel Marcus, Oct 25 2013
STATUS
approved