login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227581
Array r(m,n) = least k such that H(m) + H(n) - H(m*n + k) < g, where H denotes harmonic number and g denotes the Euler-Mascheroni constant.
3
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 7, 7, 7
OFFSET
1,2
COMMENTS
Since log(m*n) = log m + log n and log n is "close to" H(n) - g, this array indicates the "closeness" of H(m*n) to H(m) + H(n). Conjectures:
(1) r(n,n) = n for n >= 1;
(2) 2*H(n) - H(n^2 + n) < g < 2*H(n) - H(n^2 + n - 1);
(3) floor(1/(g - 2*H(n) + H(n^2 + n)) = 6*n*(n+1);
(4) floor(1/(2*H(n) + H(n^2 + n - 1) - g) = A227582(n).
LINKS
EXAMPLE
Northwest corner:
1 2 2 3 3 4 4 5 6 6
2 2 3 3 4 4 5 5 6 6
2 3 3 4 4 5 5 6 6 7
3 3 4 4 5 5 6 6 7 7
3 4 4 5 5 6 6 7 7 8
4 4 5 5 6 6 7 7 8 8
4 5 5 6 6 7 7 8 8 9
r(2,3) = 3 because h(2) + h(3) - h(9) = 0.504... < g = 0.577... < h(2) + h(3) - h(8) = 0.615... .
MATHEMATICA
h[n_] := h[n] = HarmonicNumber[n]; z = 20; r[m_, n_] := Module[{Nn = N[n, 50], Nm = N[m, 50]}, NestWhile[# + 1 &, Floor[(m + n)/2], ! h[Nm] + h[Nn] - h[Nm*Nn + #] < EulerGamma &]]; Table[r[m, n], {m, z}, {n, z}] // TableForm (* array *)
Flatten[Table[r[n - k + 1, k], {n, z}, {k, n, 1, -1}]] (* sequence *)
(* Peter J. C. Moses, Jul 16 2013 *)
CROSSREFS
Sequence in context: A023968 A284248 A204166 * A263846 A350088 A178786
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jul 17 2013
STATUS
approved