login
A227421
Primes p such that 2*p = prime(m) + prime(m + k) for some k > 2, where prime(m) and p or p and prime(m + k) are consecutive primes.
0
7, 23, 37, 47, 67, 73, 233, 277, 353, 479, 613, 619, 631, 647, 809, 1009, 1069, 1097, 1283, 1297, 1433, 1453, 1459, 1471, 1493, 1499, 1607, 1613, 1663, 1709, 1721, 1759, 1783, 1789, 1867, 1889, 1901, 1931, 1993, 2099, 2137, 2161, 2377, 2383, 2411, 2521, 2621
OFFSET
1,1
COMMENTS
This is the middle prime q in a prime triple p < q=(p+r)/2 < r such that either (p,q) are two consecutive primes or (q,r) are two consecutive primes, but (p,q,r) are not three consecutive primes.
EXAMPLE
In the ordered set of primes we have ...,607, 613, 617, 619, 631,... and (607 + 631)/2 = 619, where 619 and 631 are consecutive primes, therefore 619 is in this sequence.
MAPLE
for i from 2 to 400 do
p := ithprime(i) ;
pn := prevprime(p) ;
pk := 2*p-pn ;
if isprime(pk) and pk > nextprime(p) then
printf("%d, ", p) ;
else
pk := nextprime(p) ;
pn := 2*p-pk ;
if isprime(pn) and pn < prevprime(p) then
printf("%d, ", p) ;
end if;
end if;
end do: # R. J. Mathar, Jul 20 2013
CROSSREFS
Cf. A098029.
Sequence in context: A329931 A157811 A341284 * A098029 A098039 A132237
KEYWORD
nonn
AUTHOR
Irina Gerasimova, Jul 11 2013
EXTENSIONS
Corrected by R. J. Mathar, Jul 20 2013
STATUS
approved