login
A227408
Set of all n, where n = r(s(n)) = s(r(n)), given that r(n) = n+bitcount(n), s(n) = n-bitcount(n), and bitcount(n) is the count of binary 1's in n.
3
0, 22, 25, 38, 41, 70, 73, 134, 137, 237, 243, 262, 265, 365, 371, 429, 435, 461, 467, 492, 494, 498, 501, 518, 521, 621, 627, 685, 691, 717, 723, 748, 750, 754, 757, 813, 819, 845, 851, 876, 878, 882, 885, 909, 915, 940, 942, 946, 949, 972, 974, 978, 981, 988, 995, 1002, 1009, 1030, 1033, 1133, 1139, 1197, 1203, 1229
OFFSET
1,2
COMMENTS
This is a simple sequence where the nesting of functions r(n), and s(n), are grouped in a special way: n = r(s(n)) = s(r(n)), and those three values must be equal.
LINKS
FORMULA
Find all n, such that: n = r(s(n)) = s(r(n)), where r(n) = n+bitcount(n) and s(n) = n-bitcount(n)
EXAMPLE
0 = r(s(0)) = s(r(0)) = r(0) = s(0) = 0.
22 = r(s(22))= s(r(22)) = r(19) = s(25) = 22.
25 = r(s(25))= s(r(25)) = r(22) = s(28) = 25.
38 = r(s(38))= s(r(38)) = r(35) = s(41) = 38.
PROG
(PARI) npbc(n) = n + hammingweight(n)
nmbc(n) = n - hammingweight(n)
isok(n) = (n == npbc(nmbc(n))) && (n == nmbc(npbc(n))) \\ Michel Marcus, Aug 08 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Andres M. Torres, Jul 10 2013
EXTENSIONS
Offset changed from 0 to 1 by Michel Marcus, Aug 08 2013
STATUS
approved