OFFSET
0,2
COMMENTS
a(n) = (2*x - 1)^2 = (sqrt(2)*sqrt(sqrt(6*y^2 - 5) + 1) - 1)^2 = 2^(z + 3) - 7 for x, y, z are the solutions to two Diophantine equations noted by R. K. Guy: 2*x^2*(x^2 - 1) = 3*(y^2 - 1) & x*(x - 1)/2 = 2^z - 1 (see A180445). x = {1, 2, 3, 6, 91} = A180445(n), y = {1, 3, 7, 29, 6761} = A227077(n), and z = {0, 1, 2, 4, 12} = A215795(n).
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 181, p. 56, Ellipses, Paris 2008.
L. J. Mordell, Diophantine Equations, Academic Press, NY, 1969, p. 205.
LINKS
Curtis Bright, Solving Ramanujan's Square Equation Computationally
Eric Weisstein's World of Mathematics, Ramanujan's Square Equation
CROSSREFS
KEYWORD
nonn,fini,full,changed
AUTHOR
Raphie Frank, Jun 30 2013
STATUS
approved