login
A227078
The Ramanujan-Nagell squares: A038198(n)^2.
5
1, 9, 25, 121, 32761
OFFSET
0,2
COMMENTS
a(n) = (2*x - 1)^2 = (sqrt(2)*sqrt(sqrt(6*y^2 - 5) + 1) - 1)^2 = 2^(z + 3) - 7 for x, y, z are the solutions to two Diophantine equations noted by R. K. Guy: 2*x^2*(x^2 - 1) = 3*(y^2 - 1) & x*(x - 1)/2 = 2^z - 1 (see A180445). x = {1, 2, 3, 6, 91} = A180445(n), y = {1, 3, 7, 29, 6761} = A227077(n), and z = {0, 1, 2, 4, 12} = A215795(n).
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 181, p. 56, Ellipses, Paris 2008.
L. J. Mordell, Diophantine Equations, Academic Press, NY, 1969, p. 205.
FORMULA
a(n) + 7 = 2^A060728(n).
(a(n) - 1)/8 = A076046(n).
CROSSREFS
KEYWORD
nonn,fini,full,changed
AUTHOR
Raphie Frank, Jun 30 2013
STATUS
approved